Uniformly best wavenumber approximations by spatial central difference operators
نویسندگان
چکیده
منابع مشابه
Uniformly best wavenumber approximations by spatial central difference operators
We construct accurate central difference stencils for problems involving high frequency waves or multi-frequency solutions over long time intervals with a relatively coarse spatial mesh, and with an easily obtained bound on the dispersion error. This is done by demonstrating that the problem of constructing central difference stencils that have minimal dispersion error in the infinity norm can ...
متن کاملUniformly best wavenumber approximations by spatial central difference operators: An initial investigation
A characterisation theorem for best uniform wavenumber approximations by central difference schemes is presented. A central difference stencil is derived based on the theorem and is compared with dispersion relation preserving schemes and with classical central differences for a relevant test problem.
متن کاملBest Approximations by Smooth Functions
THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI....
متن کاملSummation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients
Finite difference operators approximating second derivatives with variable coefficients and satisfying a summation-by-parts rule have been derived for the second-, fourthand sixth-order case by using the symbolic mathematics software Maple. The operators are based on the same norms as the corresponding approximations of the first derivate, which makes the construction of stable approximations t...
متن کاملSpatial Finite Difference Approximations for Wave-Type Equations
The simplest finite difference approximations for spatial derivatives are centered, explicit, and applied to “regular” equispaced grids. Well-established generalizations include the use of implicit (compact) approximations and staggered grids. We find here that the combination of these two concepts, together with high formal order of accuracy, is very effective for approximating the first deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2015
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2015.08.005